PNAS www.pnas.org

	i C
1 2	Main Manuscript for
3	Coupled CH ₄ production and oxidation support CO ₂ supersaturation in a
4	tropical flood-pulse lake (Tonle Sap Lake, Cambodia)
5	dopied nood pulse lake (Tome Sup Lake, Camoodia)
6	Benjamin Lloyd Miller ^{1,2†} , Gordon William Holtgrieve ¹ , Mauricio Eduardo Arias ³ ,
7	Sophorn $Uy^{4,5}$, and Phen Chheng ⁶
8	1. University of Washington, School of Aquatic and Fishery Sciences
9	2. University of Washington, School of Environmental and Forest Sciences
10	3. University of South Florida, Department of Civil and Environmental Engineering
11	4. Cambodian Inland Fisheries Research and Development Institute
12	5. Royal University of Agriculture, Faculty of Fisheries
13	6. Cambodian Fisheries Administration
14	
15	[†] Corresponding author
16 17	Email: blm8@uw.edu
17	
19	Author Contributions: BLM, GWH, and MEA initiated the research and designed the
20	study approach. BLM, GWH, MEA, SU, and PC designed the field sampling effort, and
21	BLM, SU, and PC carried out field sampling. BLM conducted lab and data analyses.
22	BLM and GWH wrote the manuscript.
23	•
24	Competing Interest Statement: There are no competing interests.
25	
26	Classification: Biological Sciences—Ecology, Physical Sciences—Environmental
27	Sciences
28 29	Keywords: Carbon dioxide supersaturation, methane oxidation, flood-pulse, lake
29 30	Reywords: Carbon dioxide supersaturation, methane oxidation, nood-puise, lake
31	This PDF File Includes:
32	Main Text
33	Figures 1 to 3
34	Table 1
35	References
36	

37 Data Sharing: All data, materials, and code can be accessed at

38 <u>https://github.com/blm8/PNAS_Tonle-Sap-Carbon-Dioxide-Supersaturation</u>.

39

40 Abstract

41

42 Carbon dioxide (CO₂) supersaturation in lakes and rivers worldwide is commonly 43 attributed to terrestrial-aquatic transfers of organic and inorganic carbon (C) and 44 subsequent, *in-situ* aerobic respiration. Methane (CH₄) production and oxidation also contribute CO₂ to freshwaters, yet this remains largely unquantified. Flood-pulse lakes 45 46 and rivers in the tropics are hypothesized to receive large inputs of dissolved CO₂ and 47 CH_4 from floodplains characterized by hypoxia and reducing conditions. We measured stable C isotopes of CO₂ and CH₄, aerobic respiration, and CH₄ production and oxidation 48 during two flood stages in Tonle Sap Lake (Cambodia) to determine whether dissolved 49 50 CO_2 in this tropical flood-pulse ecosystem has a methanogenic origin. Mean CO_2 supersaturation of 11,000 \pm 9,000 µatm could not be explained by aerobic respiration 51 alone. ¹³C depletion of dissolved CO₂ relative to other sources of organic and inorganic 52 53 C, together with corresponding ¹³C enrichment of CH₄, suggested extensive CH₄ 54 oxidation. A stable isotope mixing model shows that the oxidation of ${}^{13}C$ depleted CH₄ 55 to CO₂ contributes between 47% and 67% of dissolved CO₂ in Tonle Sap Lake. 13 C 56 depletion of dissolved CO₂ was correlated to independently measured rates of CH₄ 57 production and oxidation within the water column and underlying lake sediments. 58 However, mass balance indicates that most of this CH₄ production and oxidation occurs 59 elsewhere, within inundated soils and other floodplain habitats. Seasonal inundation of 60 floodplains is a common feature of tropical freshwaters, where high reported CO₂ 61 supersaturation and atmospheric emissions may be explained in part by coupled CH₄ 62 production and oxidation.

63

64 Significance Statement

65

66 Freshwaters inextricably link flows of carbon between the land, oceans, and atmosphere.

67 Resulting carbon dioxide supersaturation relative to the atmosphere in most of the

68 world's lakes and rivers has long been assumed to come from aerobic respiration.

69 Although carbon dioxide also comes from the oxidation of anaerobically produced

- 70 methane, this has been largely ignored within freshwaters. Here, we use stable isotopes
- of carbon dioxide and methane to show that a nontrivial proportion of the total dissolved
- carbon dioxide in a tropical flood-pulse lake comes from methane oxidation. Seasonal
- 73 pulses of flooding are common in the tropics, suggesting that coupled methane
- 74 production and oxidation likely contribute more broadly to flows of carbon between the
- 75 land, understudied tropical freshwaters, and atmosphere.

76 Main Text

77

78 Introduction

79

80 Globally, most lakes and rivers are supersaturated with dissolved carbon dioxide (CO_2) 81 relative to the atmosphere, highlighting their outsized role in transferring and 82 transforming terrestrial carbon (C) (1,2,3). Terrestrial-aquatic transfers of C can include 83 CO_2 dissolved in terrestrial ground- and surface waters (3,4,5,6), dissolved inorganic carbon (DIC) from carbonate weathering (7.8), or organic C from various sources that is 84 subsequently respired in lakes and rivers (9,10). Initially, oceanic export was thought to 85 86 be the only fate for terrestrial-aquatic transfers of C, but a growing body of research on sediment burial of organic C and CO₂ emissions from freshwaters prompted the "active 87 pipe" revision to this initial set of assumptions (11). Although freshwaters are now 88 89 recognized as focal points for transferring and transforming C on the landscape, most of 90 this research has been conducted within temperate freshwaters (2,11,12). Few studies 91 focus on the mechanisms of CO₂ supersaturation in tropical lakes and rivers, with most 92 conducted in just one watershed, the Amazon (4, 13, 14, 15).

93

94 CO₂ supersaturation within tropical freshwaters is likely influenced by their unique flood-95 pulse hydrology. The canonical Flood-pulse Concept (FPC) hypothesizes that annual 96 flooding of riparian land will lead to organic C mobilization and respiration (16). Partial pressures of CO₂ (pCO₂) have been measured in excess of 44,000 μ atm in the Amazon 97 98 River (13), 16,000 μ atm in the Congo River (18), and 12,000 μ atm in the Lukulu River 99 (18). Richey et al. (13), Borges et al. (17), and Zuidgeest et al. (18) have each shown that that riverine pCO_2 scales with the amount of land flooded in these watersheds. Yet, it 100 was only recently that Abril and Borges (19) proposed the importance of flooded land to 101 102 the "active pipe." These authors differentiate uplands that unidirectionally drain water 103 downhill (via ground- and surface water) from floodplains that bidirectionally exchange water with lakes and rivers (19). They conceptualize how floodplains combine high 104 hydrologic connectivity, high rates of primary production, and high rates of respiration to 105 transfer relatively large amounts of C to tropical freshwaters (19). 106

107

108 Methanogenesis inevitably results on floodplains after dissolved oxygen (O₂) and other 109 electron acceptors for anaerobic respiration such as iron and sulfate are consumed

(16,19). Horizontal gradients in dissolved O₂ and reducing conditions have been

111 observed extending from the center of lakes and rivers through their floodplains in the

112 Mekong (20,21), Congo (22), Pantanal (23), and Amazon watersheds (4). CH₄

113 production and oxidation occur along such redox gradients (4,16,19,23). CH₄ is

114 produced by acetate fermentation (eq. 1) and carbonate reduction (eq. 2) within

115 freshwaters (24,25). CH_4 production coupled with aerobic oxidation results in CO_2 (eq.

3; 25), yet no studies have quantified the relative contribution of coupled CH₄ production
 and oxidation to CO₂ supersaturation within tropical freshwaters.

118 119

$$CH_3COOH \rightarrow CO_2 + CH_4 \tag{1}$$

120
121
$$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$$
 (2)

- 122
- 123 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
- 124

125 The relative contribution of coupled CH₄ production and oxidation to CO₂

supersaturation within tropical freshwaters can be traced with stable C isotopes of CO₂

- and CH₄. Methanogenesis results in CH₄ that is depleted in ¹³C (δ^{13} C=-65 to -50‰ from
- acetate fermentation, -110‰ to -60‰ from carbonate reduction) compared to other
- 129 potential sources of organic and inorganic C (δ^{13} C=-37 to -7.7‰; see Methods)
- 130 (24,25,26). The oxidation of this ¹³C depleted CH₄ results in ¹³C depleted CO₂ (24,25,26). At the oxidation of this ¹³C depleted CH₄ results in ¹³C depleted CO₂
- 131 (24,25,26). At the same time, CH₄ oxidation enriches the ${}^{13}C/{}^{12}C$ of residual CH₄ as 132 bacteria and archaea preferentially oxidize ${}^{12}C$ -CH₄ (25). This means that the ${}^{13}C/{}^{12}C$ of
- CO_2 and CH_4 can serve as powerful tools to determine the source of CO_2 supersaturation within freshwaters.
- 135

136 Tonle Sap Lake (TSL) is Southeast Asia's largest lake and an understudied flood-pulse

ecosystem that supports a regionally important fishery (21,22,27). Each May through

- 138 October, monsoonal rains and Himalayan snowmelt increase discharge in the Lower
- Mekong and cause one of its tributaries, the Tonle Sap River, to reverse course fromsoutheast to northwest (21). During this course reversal, the Tonle Sap River floods TSL.
- The TSL flood-pulse increases lake volume from 1.6 km³ to 60 km³ and inundates 12,000 km² of floodplain for 3-6 months per year (21,27). Holtgrieve et al. (22) have shown that
- aerobic respiration is consistently greater than primary production in TSL (i.e., net
- heterotrophy), with the expectation of consistent CO₂ supersaturation. But, the partial
 pressures, C isotopic compositions, and ultimately the source of dissolved CO₂ in TSL
 remain unquantified.
- 146 147

148 To quantify CO_2 supersaturation and its origins in TSL, we measured the partial pressures

of CO₂ and CH₄ and compared their C isotopic composition to other potential sources of
 organic and inorganic C. We carried out these measurements in distinct lake

- 151 environments during the high-water and falling-water stages of the flood-pulse.
- 152 hypothesizing that CH₄ production and oxidation on the TSL floodplain would support
- 153 CO₂ supersaturation during the high-water stage. We found that coupled CH₄ production
- and oxidation account for a nontrivial proportion of the total dissolved CO₂ in all TSL
- environments and during both flood stages, showing that anaerobic degradation of
- organic C at aquatic-terrestrial transitions can support CO₂ supersaturation within tropicalfreshwaters.

158 159 **Results**

- 160
- 161 pCO_2 and pCH_4 in TSL were consistently supersaturated relative to atmospheric
- 162 equilibrium. pCO_2 averaged 13,000 ± 6,000 µatm (mean ± 1 SD) across sites during the
- high-water stage and $13,000 \pm 12,000$ µatm during the falling-water stage (Table 1).
- 164 pCH₄ was significantly greater during the high-water stage (11,000 ± 2,000 µatm) than
- 165 during the falling-water stage ($600 \pm 300 \mu \text{atm}$) (p < 0.001, d=1.8). By contrast, pCO_2 and
- 166 pCH_4 at sea level are approximately 400 µatm and 1.8 µatm, respectively.
- 167

(3)

- CO_2 supersaturation exceeded dissolved O_2 deficits, indicating sources of dissolved CO_2 168
- 169 other than aerobic respiration (Figures 1a and 1b). CO₂ supersaturation is expected to
- vary with dissolved O_2 deficits in a -1/1 O_2 :CO₂ ratio as one µmol of dissolved O_2 is 170
- 171 consumed for each μ mol of dissolved CO₂ produced. Instead, ratios of -0.1/1 were
- 172 observed during both the high-water and falling-water stages. During the high-water
- 173 stage, the greatest CO₂ supersaturation occurred under the most hypoxic conditions 174 (Figure 1a).
- 175

176 The intercept of the relationship between $1/CO_2$ and $\delta^{13}C-CO_2$ can be used to determine 177 the source of dissolved CO₂ (Keeling Intercepts, Table S1) (28,29). In TSL, the inverse 178 of pCO₂ was strongly correlated with ¹³C depletion of CO₂. The intercept of δ^{13} C-CO₂ was as low as -51% during the high-water stage and -43% during the falling-water stage. 179 This indicates a ¹³C depleted source of dissolved CO₂ relative to the other sources of 180 181 organic and inorganic C measured, which ranged from -37% to -7.7% (Figure 2a). Observed ¹³C depletion of dissolved CO₂ coincided with ¹³C enrichment of dissolved 182 CH₄ (Table 1, Figures 3a and 3b). Acetate fermentation produces δ^{13} C-CH₄ ranging 183 from -65‰ to -50‰ and carbonate reduction produces δ^{13} C-CH₄ ranging from -110‰ to 184 -60‰ (24,25,26). By contrast, δ^{13} C-CH₄ averaged -36 ± 2‰ during the high-water 185 stage. During this flood stage, dissolved CO₂ became more ¹³C depleted and dissolved 186 CH₄ became more ¹³C enriched from open-water environments (δ^{13} C-CO₂=-37 ± 4‰, 187 δ^{13} C-CH₄=-45 ± 9‰) to edge environments (δ^{13} C-CO₂=-39 ± 6‰, δ^{13} C-CH₄=-38 ± 6‰) 188 to floodplain environments (δ^{13} C-CO₂=-41 ± 7‰, δ^{13} C-CH₄=-34 ±2‰). Net 189 fractionation between δ^{13} C-CO₂ and δ^{13} C-CH₄ (simply, δ^{13} C-CO₂ – δ^{13} C-CH₄) of 190 191 typically <10‰ in TSL indicates substantial CH₄ oxidation (25) (Figures 3a, 3b).

192

A two-source isotope mixing model for δ^{13} C-CO₂ was used to estimate fractional 193 contributions to dissolved CO₂ by CH₄ oxidation compared with other potential sources 194 195 of organic and inorganic C (Figure 2a). Assuming oxidation of CH₄ produced by acetate 196 fermentation only, the fractional contributions by CH₄ oxidation to dissolved CO₂ range from 63% to 85% across the distinct lake environments and flood stages of TSL (Table 197 198 S3). Assuming oxidation of CH_4 produced by both acetate fermentation and carbonate 199 reduction, these contributions by CH₄ oxidation fall to a more conservative 47% to 67%. Apparent fractionation between δ^{13} C-CO₂ and δ^{13} C-CH₄ (simply, δ^{13} C-CO₂/ δ^{13} C-CH₄) 200 201 of typically <1.055 in TSL indicate substantial CH₄ production by acetate fermentation 202 with some carbonate reduction (24,25) (Figure 2b).

203

 δ^{13} C-CO₂ was strongly correlated to independent measurements of net CH₄ oxidation in 204 the water column during the high-water stage (Figures 3c and 3d). The same significant 205 206 relationship was observed between δ^{13} C-CO₂ and gross CH₄ production within the 207 sediments (Figures 3e and 3f). Despite these relationships, CO_2 mass balance indicates 208 that CH₄ production and oxidation within the water column and underlying sediments 209 contribute at most 9% to dissolved CO_2 in TSL (Table S4). Of these two processes, CH_4 210 production contributes 1-2 orders of magnitude more CO₂ than CH₄ oxidation. Other 211 processing of C within the water column and underlying sediments, such as aerobic 212 respiration, also contribute a relatively small share of total dissolved CO_2 (13 ± 8%). 213

214 Discussion

215

Contributions of CH₄ production and oxidation to CO₂ supersaturation are understudied
within tropical freshwaters, where extensive flooding, dissolved O₂ deficits, and reducing
conditions at aquatic-terrestrial transitions make such contributions likely. The
subtropics and tropics are home to many high order flood-pulse rivers, such as the
Amazon, Orinoco, Congo, Zambezi, and Mekong, which are collectively responsible for
over 30% of global mean annual discharge (30). Along this tropical "active pipe" lays

52% of the world's floodplains, transferring and transforming C at relatively high rates

223 (20,31). Using a combination of isotopic tracers and mass balance, we show that a

substantial fraction this transfer and transformation of C occurs through coupled CH₄
 production and oxidation in TSL.

226

A majority of our measured δ^{13} C-CO₂ fell between the ¹³C depleted CO₂ known to result 227 from CH₄ oxidation, and the relatively more ¹³C enriched phytoplankton, periphyton, 228 macrophytes, and terrestrial C3 vegetation measured in TSL (Figure 2a). Because there 229 230 is little fractionation during aerobic respiration of organic C, measured δ^{13} C-CO₂ in lakes 231 can be expected to fall inside the range of δ^{13} C observed for commonly considered sources of organic and inorganic C (31,32). Instead, our observed δ^{13} C-CO₂ fell outside 232 233 of this range. Potential sources of organic and inorganic C in TSL ranged from δ^{13} C=-37‰ for macrophytes to δ^{13} C=-7.7‰ for atmospheric CO₂ in equilibrium with water. De 234 235 Kluiver and others (33,34) have reported relatively ¹³C depleted phytoplankton (δ^{13} C=-236 41‰, Table S2). However, the net heterotrophy and CO_2 supersaturation consistently 237 observed in TSL and other lakes (34) makes substantial contributions to dissolved CO₂ 238 from aquatic primary producers such as phytoplankton unlikely, because these 239 ecosystems are inferred to receive greater inputs of terrestrial organic C than aquatic 240 organic C. Accordingly, the δ^{13} C of dissolved CO₂ measured by De Kluiver et al. (34) ranges from -21% to -9%, suggesting that the aerobic respiration of relatively ¹³C 241 depleted phytoplankton in net heterotrophic lakes does not substantially impact δ^{13} C-242 243 CO₂. Furthermore, our most ¹³C depleted dissolved CO₂ was sampled on the TSL 244 floodplain, where the water column and underlying sediments are largely shaded by macrophytes and other emergent vegetation, limiting phytoplankton production (20). 245 246 Ultimately, methanogenesis is the only possible source of the ${}^{13}C$ depleted dissolved CO₂ 247 observed in TSL. We can therefore use a two-source stable isotope mixing model to 248 estimate relative contributions to dissolved CO₂ by 1) potential sources of organic and inorganic C and 2) CH₄ oxidation. This mixing model shows that CH₄ oxidation 249 250 contribute between 47% and 67% of dissolved C-CO₂ across the distinct lake 251 environments and flood stages of TSL, which is unprecedented in the aquatic C cycling 252 literature.

253

High CO₂ supersaturation and an imbalance with dissolved O₂ such as we observed in
TSL (Figures 1a and 1b) have previously been attributed to autotrophic and heterotrophic
respiration of macrophytes and other, emergent aquatic vegetation on flooded land
(15,16,18,35). Macrophytes and other emergent aquatic vegetation fix primarily

atmospheric CO₂, acting more as terrestrial primary producers than aquatic primary

259 producers. Melack and Engle (35) have shown that floating macrophytes dominate

- 260 primary production and provide the bulk of organic C to an Amazon floodplain lake.
- Abril et al. (15) have further suggested that floodplain and riparian wetland vegetation in
- the Amazon could export fully half of its primary production on an annual basis. Data
- from TSL supports a more nuanced interpretation. The most ¹³C depleted source of
- organic C in TSL was an individual macrophyte ($\delta^{13}C = -37\%$, mean $\delta^{13}C = -33 \pm 4\%$).
- Even so, 70% of our dissolved CO_2 measurements were depleted in ¹³C below -37‰. As confirmed by our stable isotope mixing model, this means that aerobic respiration of
- 267 macrophytes can contribute to but not explain the C isotopic depletion of dissolved CO₂
 268 observed in TSL.
- 269
- Corresponding ¹³C enrichment of dissolved CH₄ indicated a fractionating loss process, 270 further supporting the interpretation that CH₄ oxidation supports CO₂ supersaturation in 271 TSL. Acetate fermentation within tropical lake sediments from the Amazon and Pantanal 272 has been shown to produce δ^{13} C-CH₄ values ranging from -86‰ to -61‰ (36,37). The 273 same studies showed concurrent carbonate reduction producing CH₄ even more depleted 274 in ¹³C (36.37). By contrast, we measured an overall mean δ^{13} C-CH₄ of -43 ± 9‰ in TSL. 275 276 with some values as high as -11‰ (Table 1, Figures 3a, 3b). Similar values were measured by Barbosa et al. (38) on Amazon River floodplains (δ^{13} C-CH₄=-70.1‰ to -277 278 14.8%). Independently measured rates of CH₄ production and oxidation in TSL support 279 this conclusion. Both net CH₄ oxidation in the water column of TSL (Figures 3b, 3c) and gross CH₄ production within the sediments (Figures 3d and 3e) were strongly correlated 280 to δ^{13} C-CO₂. 281
- 282

283 Despite these relationships, CH₄ production and oxidation and aerobic respiration within 284 the water column and underlying sediments typically contribute less than 15% of 285 dissolved CO_2 in TSL (Table S4). In our mass balance, we solve for CO_2 advected from 286 elsewhere, within inundated soils and other floodplain habitats, and infer that this is a far 287 greater contributor to CO₂ supersaturation. This was initially hypothesized by Junk et al. (17) and later combined with the "active pipe" by Abril and Borges (20). Yet, it has been 288 289 empirically tested using dissolved CO₂ and CH₄ in only two other locations (15,18), and 290 never with the C isotopic composition of these dissolved gases.

291

292 The ¹³C depletion of CO₂, ¹³C enrichment of CH₄, and their correlations to independently measured rates of CH₄ production and oxidation suggest that these coupled processes 293 294 support CO₂ supersaturation in TSL. By extension, coupled CH₄ production and 295 oxidation are disproportionately responsible for CO₂ emissions from TSL. Lauerwald et 296 al. (13) estimate that >50% of global riverine CO₂ emissions occur in the tropics, emphasizing the importance of tropical "active pipes." Data on the stable C isotopes of 297 298 both CO₂ and CH₄ are rarely reported for freshwaters, though ¹³C enriched dissolved CH₄ 299 (>-50‰) reported in tropical and temperate lakes, wetlands, peatlands, and the Amazon 300 River implies widespread oxidation of CH₄ to CO₂ (Table S5). Coupled CH₄ production 301 and oxidation have thus been understudied, but may support CO_2 supersaturation and 302 CO₂ emissions from other tropical freshwaters with large amounts of seasonally or

- 303 perennially flooded land. The extent of this flooding will most likely change under the
- 304 twin stressors of hydropower development and climate change in the tropics (21),

impacting the future role of floodplains in the transfer and transformation of C fromterrestrial to aquatic ecosystems.

307

308 Materials and Methods

309

310 *Field Sampling* 311

312 Field sampling was conducted during the high-water and falling-water stages of the annual flood-pulse in October 2015 and March 2016, respectively, representing the 313 314 typical hydrological range in TSL. Flood stages were assessed using historical data from 315 a gauging station at Kampong Luong (See SI, Figure S1) (21). Sampling focused on three locations in the southwest (Kampong Preah), central (Anlang Reang), and 316 northwest (Prek Konteil) basins of TSL. Transects designed to capture horizontal 317 gradients in dissolved O₂ and reducing conditions were established at each location. 318 319 These transects consisted of six points extending through the distinct open-water 320 (Transect Point 1), edge (Transect Point 2) and floodplain environments of TSL (Transect 321 Points 4-6). The edge environments were characterized by a transition from open-water 322 environments to emergent, permanently rooted floodplain vegetation.

323

324 Partial Pressures of CO₂ and CH₄

325

326 Partial pressures of CO₂ and CH₄ at each transect point and flood stage in TSL were 327 quantified as the average of three duplicates collected at 0.1 m below the water surface 328 and at 0.5 m above the lake bottom where water depth exceeded 0.5 m (n=143 duplicates, 329 n=47 replicates). Water was collected into 74 mL gas-tight serum bottles using a van 330 Dorn sampler, preserved in the field with 74 µL of 50% mass/volume zinc chloride 331 solution, and placed on ice for transport to the Royal University of Phnom Penh, where they were stored at 4 °C until analysis. For analysis, samples were displaced with helium 332 to roughly equal parts headspace and water, left to equilibrate for 12 h, and analyzed for 333 334 headspace pCO_2 and pCH_4 using gas chromatography (SRI 8610*c* GC) by referencing to 335 certified standards of known concentrations.

336

337 Stable C Isotopes of CO₂ and CH₄

338

339 Following analysis for partial pressures, samples were re-sealed with Apiezon grease, inverted, placed on ice, and transported to the University of Washington for C isotopic 340 analysis (n=47). A 20 mL headspace sample was analyzed for the ${}^{13}C/{}^{12}C$ of CO₂ and 341 CH₄ simultaneously using a cavity ring-down spectrometer (Picarro G2201*i*) with a small 342 343 sample introduction module (Picarro A0314 SSIM). Following Malowany et al. (39), a column of reduced copper shavings was installed on the small sample introduction 344 345 module to eliminate interference by hydrogen sulfide with isotopic measurements. Samples exceeding 300 µatm CH₄ were diluted with ultra-high purity nitrogen to further 346 347 eliminate interference by high concentrations of this gas with isotopic measurements. 348 Stable C isotopes of CO₂ and CH₄ are each expressed in delta (δ) notation relative to Vienna Pee Dee Belemnite by referencing to certified CO₂ and CH₄ standards of known 349 concentrations and ${}^{13}C/{}^{12}C$. 350

8

352 Stable C Isotopes of Organic and Inorganic C

354 Grab samples of floating macrophytes (*Eichhornia sp.*), terrestrial C3 vegetation, 355 periphyton, and phytoplankton were collected across the distinct lake environments and flood stages of TSL, combined, and considered a single, lake-wide sample with a 356 357 minimum of four replicates. Phytoplankton were collected using a Wisconsin net 358 sampler (Wildco 40-A50), and periphyton was scraped from the benthos and the surfaces 359 of floating macrophytes and emergent aquatic vegetation. Macrophytes ($\delta^{13}C=-33 \pm 4\%$), *n*=4), terrestrial C3 vegetation ($\delta^{13}C = -29 \pm 2\%$, *n*=7), periphyton ($\delta^{13}C = -28 \pm 4\%$, 360 n=18), and phytoplankton ($\delta^{13}C=-24 \pm 4\%$, n=6) in TSL were freeze dried, ground, and 361 analyzed for bulk ¹³C/¹²C using an elemental analyzer (CE Instruments 2500 NA) 362 363 interfaced with an Isotope Ratio Mass Spectrometer (DeltaV IRMS). Laboratory working standards were glutamic acid 1 (δ^{13} C=-28.3% vs. VPDB), glutamic acid 2 364 365 $(\delta^{13}C=-13.7\%)$, and sockeye salmon $(\delta^{13}C=-21.3\%)$. DIC $(\delta^{13}C=-13.8\pm0.4\%, n=98)$ samples from another sampling effort across the same lake environments and flood stages 366 367 were acidified, displaced with a helium headspace, analyzed on a DeltaV IRMS, and 368 considered a lake-wide sample as described previously.

369

351

353

370

Depth-integrated Gross Primary Production & Aerobic Respiration 371

372 Gross primary production (GPP) and aerobic respiration were modeled across the distinct lake environments and flood stages of TSL using diel dissolved O₂ data in the 373 374 "LakeMetabolizer" R package (n=16) (40,41). Model inputs include hourly dissolved 375 oxygen (mmol L^{-1}), hourly water temperature (°C), and hourly photon flux for photosynthetically active radiation (PAR; $\mu E s^{-1} m^{-2}$). Continuously logging dissolved O₂ 376 377 and water temperature sensors were deployed for a minimum of 20 h (Precision 378 Measurement Engineering miniDO₂T Logger, accuracy + / - $0.16 \text{ mg O}_2 \text{ L}^{-1}$ and + / - 0.1379 $^{\circ}$ C). Accuracy of dissolved O₂ sensors was verified prior to field deployment using the 380 Winkler titration method. PAR was not measured directly, but calculated from full-381 spectrum irradiance based on latitude, longitude, aspect, slope, and transmissivity data 382 and the "astrocalc4r" function in the "fishmethods" R package (42). GPP and aerobic respiration were converted to mmol $CO_2 \text{ m}^{-3} \text{ d}^{-1}$ using an assimilation efficiency of 1.2 383 384 for photosynthesis (43,44) and a conversion efficiency of 1.0 for respiration. 385 Volumetric rates were multiplied by mixing depths to obtain areal rates in terms of mmol 386

387 $CO_2 \text{ m}^{-2} \text{ d}^{-1}$. Mixing depths were evaluated with dissolved O_2 profiles at each site using a 388 multi-parameter sonde calibrated just prior to deployment with water-saturated air (YSI 389 (6920). Dissolved O₂ data were plotted over depth (m), smoothed using a loss spanning 390 function of 0.2, and interrogated for inflection points in R (41). The depth of these 391 inflection points at each transect was considered the mixing depth.

392

393 Depth-integrated CH₄ Production & Oxidation

394

395 Gross CH_4 production within lake sediments was quantified as the average of three,

396 duplicate sediment incubations. At each transect point and flood stage in TSL, sediment

 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 410 	cores were taken with a stainless-steel corer. The upper 1 cm ³ of each core was sealed inside a 74 mL gas-tight serum bottle (<i>n</i> =72 duplicates, <i>n</i> =24 replicates). The remaining volume of the bottle was filled with bottom water collected 0.5 m above the sediments. Three additional bottles were filled with bottom water, only, and three with water collected 0.1 m below the water surface. All bottles were incubated at ambient air temperatures (25-33 4 °C), which were typically <4 °C different from water temperatures in TSL, and sampled daily from a helium headspace for seven days. <i>p</i> CH4 was analyzed as described previously and corrected for progressively decreasing headspace:water ratios. Net CH ₄ oxidation in surface waters was multiplied by mixing depths to obtain areal rates as above. Net oxidation in bottom waters was added to net CH ₄ production measured in the bottles containing a combination of sediment cores and bottom water and considered gross CH ₄ production. Following incubation, each sediment core was dried at 100 °C for three hours and weighed. Gross CH ₄ production rates were then corrected for sediment core weight and scaled to nmol CH ₄ m ⁻³ d ⁻¹ . Previously published studies of CH ₄ production in lake sediment cores show that rates measured at the sediment-water interface are consistent to a sediment depth of 0.1 m (25,45). Volumetric rates of CH ₄ production were thus multiplied by 0.1 m to obtain areal rates in terms of nmol CH ₄ m ⁻² d ⁻¹ . Because one mol of CO ₂ is produced for each mol of CH ₄ produced during acetate fermentation, presumed to be dominant in TSL (Figure 2b) and within freshwaters more broadly (24,25), rates were also considered in terms of nmol CO ₂ m ⁻² d ⁻¹ . Each transect sampled included negative control incubations amended with a 74 µL of 50% mass/volume zinc chloride solution.
419 420	Mass Balance
421 422 423 424	A mass balance for dissolved CO_2 in TSL was created from processes resulting in a gain or loss of CO_2 :
425 426	$CO_{2,Measured} = CO_{2,Advected} + CO_{2,Respiration} - CO_{2,GPP} + CO_{2,MProd} + CO_{2,MOx}$
420 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442	where $CO_{2,Respiration}$ is the CO_2 gained from modeled aerobic respiration (mmol m ⁻² d ⁻¹), $CO_{2,GPP}$ is the CO_2 lost from modeled GPP (mmol m ⁻² d ⁻¹), $CO_{2,MProd}$ is the CO_2 gained from measured gross CH ₄ production within sediments (mmol m ⁻² d ⁻¹), and $CO_{2,MOx}$ is the CO_2 gained from measured net CH ₄ oxidation in the water column (mmol m ⁻² d ⁻¹). $CO_{2,Measured}$ is the <i>p</i> CO ₂ measured within the water column of TSL and multiplied by a temperature dependent Henry's constant and mixing depth to yield dissolved CO ₂ in mmol m ⁻² on the day of sampling. Diffusion of CO ₂ from TSL to the atmosphere was modeled using $CO_{2,Measured}$ following Cole and Caraco (46). CO ₂ diffusion reflects an atmospheric loss subsequent to $CO_{2,Measured}$ and was ultimately excluded from the mass balance. $CO_{2,Advected}$ is the remaining CO ₂ in the mass balance assumed to result from aerobic respiration and anaerobic degradation of organic C elsewhere, within inundated soils and other floodplain habitats under steady state conditions (mmol m ⁻³ d ⁻¹). Mean daily $CO_{2,Advected} \pm 1$ SE was quantified using normal distributions—based on sample size, mean, and standard deviation—of other terms in the mass balance over 10,000 Monte Carlo simulations in R (41).

443 Stable Isotope Mixing Model

444

The C isotopic composition of CO_2 measured in TSL fell between the ${}^{13}C/{}^{12}C$ produced by 1) the oxidation of ${}^{13}C$ depleted CH₄ to CO_2 (-110‰ to -50‰) and 2) that of other potential organic and inorganic sources of CO_2 (-37‰ to -7.7‰). Here, the sole concern is the fraction of CO_2 derived from CH₄ oxidation. Thus, a two-source ("Methane" versus "Other") stable isotope mixing model was deemed appropriate. The model also accounted for CO_2 losses from primary production and atmospheric diffusion, and took the form:

452

453
$$\delta^{13}CO_2 = (\delta^{13}C_{Methane} \cdot f_{Methane}) + (\delta^{13}C_{Other} \cdot f_{Other})$$

454
$$-\left(\left(\delta^{13}CO_{2,Measured} + \varepsilon_{GPP}\right) \cdot f_{GPP}\right)\right)$$

455
$$-\left(\left(\delta^{13}CO_{2,Measured} + \varepsilon_{Diffusion}\right) \cdot f_{Diffusion}\right)$$

456

457 where $\Sigma f_i = 1.00$. $\delta^{13}C_{Methane}$ was modeled as a continuous uniform distribution of $\delta^{13}C_{458}$ 458 CH₄ values produced by methanogenesis, ranging from -110‰ to -50‰ (Figure 2a) 459 (24,25,26). $f_{Methane}$ is the fraction of CO₂ resulting from CH₄ oxidation. Because 460 $\delta^{13}C_{Methane}$ encompasses the range of $\delta^{13}C$ values produced by both acetate 461 fermentation (-65‰ to -50‰)—presumed to be dominant in TSL and within freshwaters 462 more broadly (24,25)—and carbonate reduction (-110‰ to -60‰), the model results in a 463 conservative estimate of $f_{Methane}$ for this freshwater lake (Figure 2b). 464 465 $\delta^{13}C$ was also modeled as a continuous uniform distribution of $\delta^{13}C$ values

 $\delta^{13}C_{\text{Other}}$ was also modeled as a continuous uniform distribution of $\delta^{13}C$ values 465 466 encompassing other potential sources of organic and inorganic C (See SI, Figure S2). This distribution ranges from the most ¹³C depleted source of organic C measured in 467 TSL, macrophytes (δ^{13} C=-37‰), to the most ¹³C enriched source of inorganic C, 468 atmospheric CO₂ in equilibrium with water ($\delta^{13}C = -7.7\%$) (47). $\delta^{13}C_{Other}$ therefore 469 encompasses the δ^{13} C of terrestrial C3 vegetation, periphyton, phytoplankton, and DIC 470 471 measured in TSL and the δ^{13} C of emergent aquatic C4 grasses (δ^{13} C=-12.2 ± 0.3‰) 472 measured by Hedges et al. (48) in the Amazon. With multiple sources of organic and 473 inorganic C that overlap in δ^{13} C and no prior information on the relative importance of 474 each, the most parsimonious option was to treat them as a group with equal probability 475 across the full range of δ^{13} C values. However, multiple alternative models were also tested (See SI, Table S3). 476

477

 $\delta^{13}C_{\text{CO}_{2,\text{Measured}}}$ and mass-dependent fractionations for photosynthesis (f_{GPP}) and 478 diffusion to the atmosphere $(f_{\text{Diffusion}})$ in the model were quantified by this study and its 479 mass balance (See SI, Table S4). The kinetic fractionation factors for photosynthesis and 480 diffusion, ε_{GPP} and $\varepsilon_{Diffusion}$, are -19‰ and -1.1‰, respectively (47). Following the 481 IsoSource mixing model by Phillips et al. (49), $f_{Methane}$ and f_{Other} were assigned possible 482 values between 0.00 and 1.00 by 0.05 and $\delta^{13}CO_2$ was solved for iteratively in R (41). If 483 the resulting $\delta^{13}CO_2 = \delta^{13}CO_{2,Measured} \pm 1\%$ and $f_{Other} > 0.15$ (allowing a minimum 484 f_{Other} of 20%), then $f_{Methane}$ was saved. Sensitivities of the continuous uniform 485 distributions generated by the model were quantified over 10,000 Monte Carlo 486

487 simulations in R (41). The mean of all saved $f_{Methane}$ values was then reported as the 488 fraction of CO₂ resulting from CH₄ production and oxidation. Variance around these 489 saved $f_{Methane}$ values is based on different continuous uniform distributions generated at 490 random by the mixing model and was ultimately not reported.

491

492 *Statistical Analyses*

493

494 Normality in the data was assessed using quantile-quantile plots and Shapiro-Wilk tests. Homogeneity of variance in the data was assessed using Levene's tests. pCH_4 and $\delta^{13}C_{-1}$ 495 CO₂ followed non-normal distributions and were log-transformed for parametric 496 497 comparisons along with pCO₂ and δ^{13} C-CH₄ across the distinct lake environments and flood stages of TSL using ANOVA. Multiple pairwise-comparisons between means in 498 499 the open-water, edge, and floodplain environments during the high-water and falling-500 water stages were carried out subsequently using Tukey Honest Significant Differences. 501 Our Bonferroni-corrected critical alpha-value for multiple pairwise comparisons was 0.025 (for linear regression, our critical alpha-value remained 0.050). To assess whether 502 503 differences between means were independent of sample size, we also calculated effect 504 sizes using Cohen's d, where d=0.2-0.4 corresponds to a small effect and low support for differences between means, d=0.5-0.7 corresponds to a medium effect, and d>0.9505 corresponds to a large effect and high support for differences (50). All statistical 506 507 analyses were conducted using R(41).

508

509 Acknowledgements

510

511 We gratefully acknowledge assistance from the Cambodian Inland Fisheries Research 512 and Development Institute, Cambodian Fisheries Administration, and inhabitants of the 513 floating villages in TSL. We also thank Vittoria Elliott of World Fish and David Ford of 514 Royal University of Phnom Penh for further in-country support. David Butman, Jeffrey 515 Richey, Daniel Schindler, and two anonymous reviewers provided helpful comments during the preparation of this manuscript. This research was supported by the National 516 517 Science Foundation and Margaret A. Cargill Foundation. BLM was additionally supported by a National Science Foundation Graduate Research Fellowship and a 518 519 National Security Education Program Boren Fellowship. MEA was additionally 520 supported by a Florida Education Fund McKnight Junior Faculty Fellowship. Portions of 521 this paper were developed from the doctoral thesis of BLM. 522

523 **References**

- 524
- J.J. Cole, N.F. Caraco, G.W. Kling, T.K. Kratz, Carbon dioxide supersaturation in the surface waters of lakes. Science, 265(5178), 1568-1570 (1994).
 doi:10.1126/science.265.5178.1568
- P.A. Raymond, J. Hartmann, R. Lauerwald, S. Sobek, C. McDonald, M. Hoover,
 D. Butman, R. Striegl, E. Mayorga, C. Humborg, P. Kortelainen, H. Duerr, M.
 Meybeck, P. Ciais, P. Guth, Global carbon dioxide emissions from inland waters.
 Nature, 503, 355-359 (2013). doi:10.1038/nature12760
- 532 3. G.W. Kling, G.W. Kipphut, M.C. Miller, Arctic lakes and rivers as gas conduits

533		to the atmosphere—Implications for tundra carbon budgets. Science, 251, 298-
534		301 (1991). doi:10.1126/science.251.4991.298
535	4.	J.E. Richey, A.H. Devol, S.C. Wofsy, R. Victoria, M.N.G. Riverio, Biogenic
536		gases and the oxidation and reduction of carbon in Amazon River and floodplain
537		waters. Limnol. Oceanogr., 33(4), 551-561 (1988). doi:10.4319/lo.1988.33.4.0551
538	5.	J.B. Jones, P.J. Mulholland, Carbon dioxide variation in a hardwood forest
539		stream—An integrative measure of whole catchment soil respiration. Ecosystems,
540		1, 183-196 (1998). doi:10.1007/s100219900014
541	6.	P.A. Raymond, J.E. Saiers, W.V. Sobczak, Hydrological and biogeochemical
542		controls on watershed dissolved organic matter transport—Pulse-shunt concept.
543		Ecology, 97(1), 5-16 (2016). doi:10.1890/14-1684.1
544	7.	P. Lopez, R. Marce, J. Armengol, Net heterotrophy and CO ₂ evasion from a
545		productive calcareous reservoir—Adding complexity to the metabolism-CO ₂
546		evasion issue. J. Geophys. Res., 116, G02021 (2011). doi:10.1029/2010JG001614
547	8.	R. Marce, B. Obrador, J.A. Morgui, J.L. Riera, P. Lopez, J. Armengol, Carbonate
548		weathering as a driver of CO ₂ supersaturation in lakes. Nat. Geosci., 8, 107-111
549		(2015). doi:10.1038/NGEO2341
550	9.	P.A. Del Giorgio, J.J. Cole, N.F. Caraco, R.H. Peters, Linking planktonic biomass
551		and metbolism to net gas fluxes in northern temperate lakes. Ecology, 80(4),
552		1422-1431 (1999). doi:10.1890/0012-9658(1999)080[1422:LPBAMT]2.0.CO;2
553	10). J.J. Cole, N.F. Caracao, Carbon in catchments—Connecting terrestrial carbon
554		losses with aquatic metabolism. Mar. Freshwater Res., 52, 101-110 (2001).
555		doi:10.1071/MF00084
556	11	. J.J. Cole, Y.T. Prairie, N.F. Caraco, W.H. McDowell, L.V. Tranvik, R.G. Streigl,
557		C.M. Duarte, P. Kortelainen, J.A. Downing, J.J. Middleburg, J. Melack, Plumbing
558		the global carbon cycle—Integrating inland waters into the terrestrial carbon
559		budget. Ecosystems, 10, 171-184 (2007). doi:10.1007/s10021-006-9013-8
560	12	P. R. Lauerwald, G.G Laruelle, J. Hartmann, P. Ciais, P.A.G. Regnier, Spatial
561		patterns in CO2 evasion from the global river network. Global Biogeochem. Cy.,
562	1.0	29, 534-554 (2015). doi:10.1002/2014GB004941.
563	13	B. J.E. Richey, J.M. Melack, A.K. Aufdenkampe, V.M. Ballester, L.L. Hess,
564		Outgassing from Amazonian rivers and wetlands as a large tropical source of
565	1 /	atmospheric CO2. Nature, 416, 617-620 (2002). doi:10.1038/416617a
566 567	14	B. G. Abril, J. Martinez, L.F. Artigas, P. Moreira-Turcq, M.F. Benedetti, L. Vidal, T.
567 568		Meziane, J. Kim, M.C. Bernardes, N. Savoye, J. Deborder, E.L. Souza, P.
568 560		Alberic, M.F. Landem de Souza, F. Roland, Amazon River carbon dioxide outgassing fuelled by wetlands. Nature, 505, 395-398 (2014).
569 570		doi:10.1038/nature12797
571	15	5. J.H.F. Amaral, V.F. Farjalla, J.M. Melack, D. Kasper, V. Scofield, P.M. Barbosa,
572	15	B.R. Forsberg, Seasonal and spatial variability of CO ₂ in aquatic environments of
573		the central lowland Amazon basin. Biogeochemistry, 143, 133-149 (2019).
574		doi:10.1007/s10533-019-00554-9
575	16	5. W.J. Junk, P.B. Bayley, R.E. Sparks, "The flood pulse concept in river-floodplain
576	10	systems" in Proceedings of the International Large River Symposium, D.P.
577		Dodge, Ed. (Canadian Special Publication of Fisheries and Aquatic Sciences,
578		1989), pp. 110-127.
570		1707 <i>J</i> , PP. 110 127.

- 579 17. A.V. Borges, G. Abril, F. Darchambeau, C.R. Teodoru, J. Deborde, L.O. Vidal, T.
 580 Lamber, S. Bouillion, Divergent biophysical controls of aquatic CO2 and CH4 in
 581 the world's two largest rivers. Sci. Rep., 5, 15614 (2015). doi:10.1038/srep15614
- 18. A. Zuijdgeest, S. Baumgartner, B. Wehrli, Hysteresis effects in organic matter
 turnover in a tropical floodplain during a flood cycle. Biogeochemistry, 131, 4963 (2016). doi:10.1007/s10533-016-0263-z

585 19. G. Abril, A.V. Borges, Ideas and perspectives-Carbon leaks from flooded land-Do we 586 need to replumb the inland water active pipe? Biogeosciences, 16, 769-784 (2019). doi:10.5194/bg-16-769-2019 587 588 20. M.E. Arias, T.A. Cochrane, T. Piman, M. Kummu, B.S. Caruso, T.J. Killeen, Quantifying changes in flooding and habitats in the Tonle Sap Lake (Cambodia) caused by water 589 590 infrastructure development and climate change in the Mekong Basin. J. Environm 591 Manage., 112, 53-66 (2012). doi:10.1016/j.envman.2012.07.003 592 21. G.W. Holtgrieve, M.E. Arias, K.N. Irvine, D. Lamberts, E.J. Ward, M. Kummu, J. Koponen, J. Sarkkula, J.E. Richev, Patterns of ecosystem metabolism in the Tonle Sap 593 594 Lake, Cambodia with links to capture fisheries. PLoS One, 8(8), e71395 (2013). 595 doi:10.1371/journal.pone.0071395 22. Borges, S.V., F. Darchambeau, T. Lambert, C. Morana, G.H. Allen, E. Tambwe, A.T. 596 597 Sembaito, T. Mambo, J.N. Wabakhangazi, J.P. Descy, C.R. Teodoru, and S. Bouillon, 598 Variations in dissolved greenhouse gases (CO₂, CH₄, N₂O) in the Congo River 599 overwhelmingly driven by fluvial wetland connectivity. Biogeosciences, 16, 3801-3834 600 (2019). doi:10.5194/bg-16-3801-2019 601 23. S. K. Hamilton, S.J. Sippel, D.F. Calheiros, J.M. Melack, An anoxic event and other biogeochemical effects of the Pantanal wetland on the Paraguay River. Limnol. 602 Oceanogr., 42(2), 257-272 (1997). doi:10.4319/lo.1997.42.2.0257 603 604 24. M.J. Whiticar, E. Faber, Methane oxidation in sediment and water column environments—Isotopic evidence. Org. Geochem, 10(4-6), 759-768 (1986). 605 606 doi:10.1016/S0146-6380(86)80013-4 607 25. M.J. Whiticar, Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol., 161, 291-314 (1999). doi:10.1016/S0009-608 609 2541(99)00092-3 610 26. E.R. Hornibrook, F.J. Longstaffe, and W.S. Fyfe, Evolution of stable C isotope compositions for methane and carbon dioxidein freshwater wetlands and other anaerobic 611 612 environments. Geochim. Cosmochim. Acta, 64(6), 1013-1027 (2000). 27. W. Burnett, G. Wattayakorn, R. Supcharoen, K. Sioudom, V. Kum, S. Chanyotha, R. 613 Kritsananuwat, Groundwater discharge and phosphorus dynamics in a flood-pulse 614 system—Tonle Sap Lake, Cambodia. J. Hydrol., 549, 79-91 (2017). 615 616 doi:10.1016/j.jhydrol.2017.03.049 617 28. C.D. Keeling, The concentration and isotopic abundance of carbon dioxide in rural areas. Geochim. Cosmochim. Acta, 13, 322-334 (1958). doi:10.1016/0016-7037(58)90033-4 618 619 29. C.D. Keeling, The concentration and isotopic abundance of carbon dioxide in rural and 620 marine air. Geochim. Cosmochim. Acta, 24, 277-298 (1961). doi:10.1016/0016-7037(61)90023-0 621 622 30. A. Dai, K.E. Trenberth, Estimates of freshwater discharge from continents-Latitudinal 623 and seasonal variations. J. Hydrometeorol., 3(6), 660-687 (2002). doi:10.1175/1525-624 7541(2002)003<0660:EOFDFC>2.0.CO;2 625 31. J.F. Pekel, A. Cottam, N. Gorelick, A.S. Belward, High-resolution mapping of global 626 surface water and its long-term changes. Nature, 540, 418-422 (2016). 32. B.J. Peterson, B. Fry, Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst., 18, 627 293-320 (1987). doi:10.1146/annurev.es.18.110187.001453 628 629 33. A. De Kluijver, P.L. Schoon, J.A. Downing, S. Schouten, J.J. Middleburg, Stable carbon isotope biogeochemistry of lakes along a trophic gradient. Biogeosciences, 11, 6615-630

631		6646 (2014). doi:10.5194/bgd-11-6615-2014
632	34.	S.L. McCallister, P.A. Del Giorgio, Direct measurement of the d13C signature of carbon
633		respirared by bacteria in lakes-Linkages to potential carbon sources, ecosystem baseline
634		metabolism, and CO2 fluxes. Limnol. Oceanogr., 53(4), 1204-1216 (2008).
635		doi:10.4319/lo.2008.53.4.1204
636	35.	J.M. Melack, D.L. Engle, An organic carbon budget for an Amazon floodplain lake.
637		Verh. Internat. Verein. Theor. Angew. Limnol., 30(8), 1179-1182 (2009).
638		doi:10.1080/03680770.2009.11923906
639	36.	R. Conrad, M. Klose, P. Claus, A. Enrich-Prast, Methanogenic pathway, 13C isotope
640		fractionation, and archaeal community composition in the sediment of two clear-water
641		lakes of Amazonia. Limnol. Oceanogr., 55(2), 689-702 (2010).
642		doi:10.4319/lo.2010.55.2.0689
643	37.	R. Conrad, M. Noll, P. Clause, M. Klose, W.R. Bastos, A. Enrich-Prast, Stable carbon
644		isotope discrimination and microbiology of methane formation in tropical anoxic lake
645		sediments. Biogeosciences, 8, 795-814 (2011). doi:10.5194/bg-8-795-2011/
646	38.	P.M. Barbosa, V.F. Farjalla, J.M. Melack, J.H.F. Amaral, J.S. da Silva, B.R. Forsberg,
647		High rates of methane oxidation in an Amazon floodplain lake. Biogeochemistry, 137,
648		351-365 (2018). doi:10.1007/s10533-018-0425-2
649	39.	K. Malowany, J. Stix, A. Ven Pelt, G. Luic, H2S interference on CO ₂ isotopic
650		measurements using a Picarro G1101-i cavity ring-down spectrometer. Atmos. Meas.
651		Tech., 8, 4075-4082 (2015). doi:10.5194/amt-8-4075-2015
652	40.	L.A. Winslow, J.A. Zwart, R.D. Batt, H.A. Dugan, R.I. Woolway, J.R. Corman, J.S.
653		Read, LakeMetabolizer—An R package for estimating lake metabolism from free-water
654		oxygen using diverse statistical models. Inland Waters, 6(4), 622-636 (2016).
655		doi:10.1080/IW-6.4.883
656	41.	R Core Team, R—A language and environment for statistical computing, version 4.1.0
657		(R Foundation for Statistical Computing, 2019).
658	42.	G.A. Nelson, fishmethods—Fishery Science Methods and Models (R package version
659		1.11-1, 2019). http://CRAN.R-project.org/package=fishmethods
660	43.	G.E. Likens, "Primary production of inland aquatic ecosystems" Primary Productivity of
661		the Biosphere, H. Leith, R.H. Whittaker, Eds. (Springer, 1975), pp. 185-202.
662	44.	J.M. Melack, Primary productivity and fish yields in tropical lakes. Trans. Am. Fish.
663		Soc., 105(5), 575-580 (1976). doi:10.1577/1548-8659(1976)105<575:PPAFYI>2.0.CO;2
664	45.	B. Thebrath, F. Rothfuss, M.J. Whiticar, R. Conrad, Methane production in littoral
665		sediment of Lake Constance. FEMS Microbiol. Lett., 102(3-4), 279-289 (1993).
666		doi:10.1016/0378-1097(93)90210-S
667	46.	J.J. Cole, N.F. Caraco, Atmospheric exchange of carbon dioxide in a low wind
668		oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr., 43(4), 647-656
669		(1998). doi:10.4319/lo.1998.43.4.0647
670	47.	M.H. O'Leary, Carbon isotope fractionation in plants. Phytochemistry, 20, 553-567
671		(1981). doi:10.1016/0031-9422(81)85134-5
672	48.	J.I. Hedges, W.A. Clark, P.D. Quay, J.E. Richey, A.H. Devol, M. Santos, Compositions
673		and fluxes of particulate organic material in the Amazon River. Limnol. Oceanogr.,
674		31(4), 717-738 (1986). doi:10.4319/lo.1986.31.4.0717

- 49. D.L. Phillips, S.D. Newsome, J.W. Gregg, Combining sources in stable isotope mixing models—Alternative methods. Oecologia, 144, 520-527 (2005). doi:10.1007/s00442-004-1816-8
 50. J. Cohen, Statistical Power Analysis for the Behavioral Sciences, (Lawrence Earlbaum
 - 50. J. Cohen, Statistical Power Analysis for the Behavioral Sciences, (Lawrence Earlbaum Associates, 1988), pp. 1-567.
- 679 680

681 Figure 1. a) Dissolved O_2 deficit and CO_2 supersaturation relative to atmospheric equilibrium in 682 open-water, edge, and floodplain environments of TSL during the high-water and b) fallingwater stages of the flood-pulse. Dissolved O₂ deficit and CO₂ supersaturation are calculated as 683 684 the difference between atmospheric equilibrium according to Henry's Law. Orange lines show atmospheric equilibrium at 0 μ mol L⁻¹ dissolved O₂ or CO₂. A slope (*m*) of -1.0 for represents 685 the equimolar consumption of dissolved O₂ and production of dissolved CO₂ expected during 686 aerobic respiration (black dashed line). Instead, a slope of -0.1 was observed during both the 687 high-water and falling-water stages. O₂ deficits were strongly correlated to CO₂ supersaturation 688 689 during the high-water stage, but there was no such correlation during the falling-water stage.

690

Figure 2. a) Measured δ^{13} C-CO₂ (blue) relative to other potential sources of organic and 691 692 inorganic C during the high-water and falling-water stages of the flood-pulse. "Other" potential 693 sources of organic and inorganic C measured by this study in TSL include macrophytes, 694 terrestrial C3 vegetation, periphyton, phytoplankton, and DIC. Emergent aquatic C4 grasses, 695 measured by Hedges et al. (48) in the Amazon, and atmospheric CO₂ in equilibrium with water 696 (47) are also included. Isotopic values quantified by this study are in blue and white, and those 697 quantified by other studies (24,25,26,47,48) are in gray. b) Apparent fractionation between δ^{13} C-CO₂ and δ^{13} C-CH₄ (α_{app}) indicated substantial CH₄ production through acetate 698 fermentation with some carbonate reduction in TSL (24,25). Therefore, a two-source isotope 699 700 mixing model was created using 1) a continuous uniform distribution of δ^{13} C-CO₂ known to result from the oxidation of CH₄ produced by both pathways (gray boxes) and 2) a continuous 701 uniform distribution of δ^{13} C-CO₂ from DIC and the aerobic respiration of potential organic C 702 703 sources (white box).

704

Figure 3. a) δ^{13} C-CO₂, δ^{13} C-CH₄, in open-water, edge, and floodplain environments of TSL 705 during the high-water and b) falling-water stages of the flood-pulse, modified from Whiticar 706 707 (25). Zones of CH₄ production by acetate fermentation, CH₄ production by carbonate reduction, 708 and CH₄ oxidation based on apparent fractionation between δ^{13} C-CO₂ and δ^{13} C-CH₄ ($\epsilon_{\rm C}$) are shaded in grey. c) 13 C depletion of CO₂ was strongly correlated to independent measurements of 709 net CH₄ oxidation in the water column during the high-water stage, **d**) though not during the 710 falling-water stage. e) 13 C depletion of CO₂ was also strongly correlated to gross CH₄ production 711 712 within sediments during the high-water stage, **f**) though not during the falling-water stage. 713

Table 1. Mean partial pressures (μ atm) ± 1 SD and δ^{13} C (‰) ± 1 SD for CO₂ and CH₄ in openwater, edge, and floodplain environments of TSL during the high-water and falling-water stages of the flood-pulse. Mean partial pressures (μ atm) and δ^{13} C (‰) across all lake environments for the high-water and falling-water stages are also shown.